Aut_maTech®

We Make Plant Information Flow

Document Type: Tech Brief

Document ID: TB010_JM

Last Modified Date: 6/7/2017 10:07 AM
Challenge:

How to place a Pop-Up screen where the button is, esp. on dual screen monitors.

Here is a method to accomplish this, extend as necessary:

Introduction: Pop-up screens are normally (almost always) opened with a Click_Event. Even
though it is still possible to place the Pop-up within the OpenPicture subroutine, it gives no
context where the Click_Event occurred. This is more troublesome when there are multiple
monitors involved as it may not be immediately apparent that the Pop-up did open as the
operator may be focused on the other screen.

Method: Determine the position of the object that is going to open the new picture and
use the “,Top, Left” parameters of the OpenPicture function to position the new picture. This is
a bit of an art and won’t ever be exact, but we can get pretty close.

Two key points to remember: First the coordinates for the object on the screen and the
picture to be opened, are the upper left hand corner point. Second the overall coordinates for
Workspace are also the upper left hand corner and that point is 0,0 in both percentage and
pixels. The lower right hand corner is the resolution of the screen.

Note: Even though you can do calculations based on the actual screen resolution, |
advise against this for getting best results. Create a small rectangle and drag it around and take
note of the screen pixels from the “Property Window”. Don’t forget if you have a title bar etc.
you may have to add those coordinates.

Step 1) Create a routine to open the picture. Depending on your Application (and taste)
you may want to create a routine for each picture, or the other option is to pass more
parameters or sacrifice accuracy. In my Sample | created a routine with picture scope, you can
easily globalize this

Step 2) Get the position of the calling object with the FindObject Method.
Step 3) Use predetermined calculated numbers, re-cast them as picture percantages.

Step 4) Call the OpenPicture Method with to newly calculated position.




Sub PopUp (Obj As String, Pic As String)
Dim Btn As Object
Dim nx As Single
Dim ny As Single

Dim a As Single

Dim b As Single

Dim c As Single

Dim d As Single

Dim e As Single

Dim f As Single
o

Az Single

Set Btn = Me.FindObject (Obj)
bx = Brn.HorizontalPosition
by = Btn.VerticalPosition

a = 252 ' Width of the PopUp in pixels (as stated in property window)

b = 64 ' Width of button in pixels (This may seem like over kill for a button, but may be important for larger objects)

c = 1440 ' Width of main screen as determined by rectangle drag

d=11 ' Height of button (see above)

e = 101 ' Hieght of PopUp

£f = 82 ' Height of Title Bar Picture

g = B64 ' Height of Picture (calculated by 1080 * 0.8, this is 80% (minus title and footer)) For some ODD reason this works better than rectangle drag which gave 650

'Your mileage may va create a screen with two buttons and drag them around and t them out.

((Btn.H
[(Et,n.'ie:tlcallE':ns:.:l:nr‘. +

rizontalPosition - 252 + 64)

11 - 101 +

nx = ((Btn.HorizontalPosition - a2 + b) / c) * 100
ny = ((Btn.VerticalPosition + d - e + £) / g) * 100

M=sgBox "NY: ™ & Str(ny) & vbCrLf & "NX: "™ & Str(nx) & vbCrLf & "BY: "™ & Str(Btn.VerticalPosition) & vbCrLf & "BX: "™ & Str(Btn.HorizontalPosition)
OpenPicture Pic, , ny, nx

End Sub

Original Author: John McCue on 5/26/2017

Key Words: #popup #screen #dual #monitors #dualmonitors #workspace #picture #hmi #hmiscreens
#HMI #screens

Products: iFIX

Version History: Original version




