AutomaTech

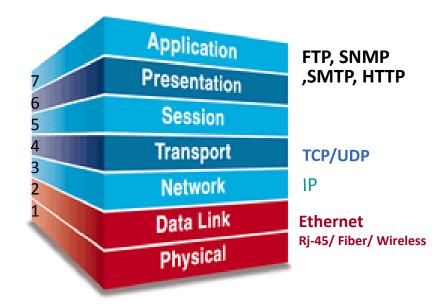
The OSI Model

Networking Basics
Marty Rubenstein
Presales Application Engineer
mrubenstein@automatech.com

AutomaTech Solution Brief What is a network?

- We all use networks in our everyday lives
 - Facebook
 - Linkedin
 - Internet
- Getting data from one point to another efficiently and effectively
- Networks include two or more intelligent devices connected to a communication system
- Networks tend to grow with time as more and more capabilities are required and more endpoints are added.

AutomaTech Solution Brief

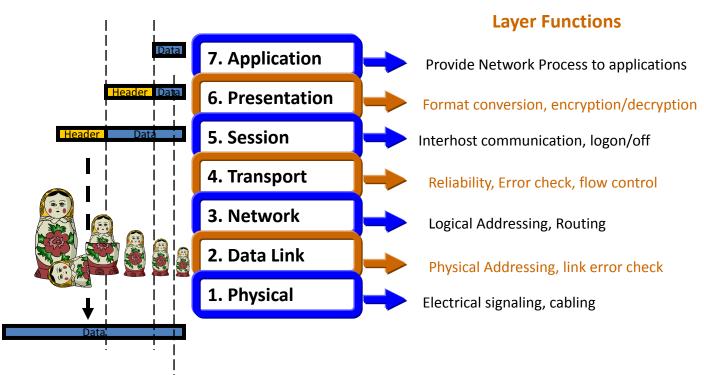

Basic Networking

- As networks begin to be more integrated security becomes an issue.
 - Some communications we want to allow
 - Others we do not.
- When networks get larger they become harder and more complex to manage.
- More protocols required, and greater networking knowledge required to maintain.
- Having a good foundation on the basics will help you understand the more complicated topics in the future.

The OSI Model

The primary purpose is to allow different vendors networks to interoperate.

Benefits of the OSI Model

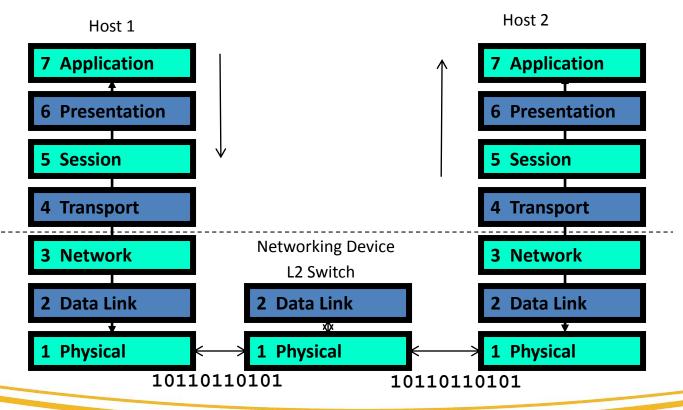


- It divides the network communication processes into smaller and simpler components, aiding component design and troubleshooting.
- It allows for multivendor development through standardization of network components.
- It encourages industry standardization by defining what functions occur at each layer of the model.
- It allows various network hardware and software to communicate.
- It prevents changes in one layer from effecting the other layers simplifying development.

Data Encapsulation

Host and Media Layers

- 7 Application
- **6 Presentation**
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical


- Host Layers
 - These layers exist in the source and destination host devices

- Media Layers
 - These layers manage the information in the LAN or WAN between the source and destination devices

Host to Host Flow

Layer 7 - The Application Layer

- 7 Application
- **6 Presentation**
- **5** Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

Responsibilities:

- This layer deals with networking applications.
- Application Services like ftp, tftp, etc
- Establishes availability of communication partner
- Where users actually communicate with the device

Used for applications specially written to run over the network

Examples: Email, Web browsers

Telnet

Protocol Data Unit: User Data

OSI 7 Layers:

Application Layer in Automation

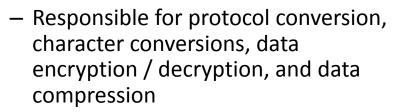
FF HSE

MODBUS/TCP

PROFInet

BACNet/IP

EIBNet/IP



Presentation & Session Layers

- 7 Application
- **6 Presentation**
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

Presentation

- Session
 - Establishes, maintains and ends sessions across the network
 - Manages who can transmit data when and for how long

Layer 4 -The Transport Layer

- 7 Application
- **6 Presentation**
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

■ Responsibilities:

- Provides virtual end-to-end links between peer processes.
- Fragmentation & Reassembly
- End-to-end flow control

- TCP/UDP headers
- Error detection
- Reliable communication

PDU

 Protocol data unit is called a 'Segment'

Layer 3 - The Network Layer

- 7 Application
- **6 Presentation**
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

■ Responsibilities:

- "Best Path Determination" based on logical addresses (Routing)
- Subnet flow control. (IP)
- Translation between different network types.

■ Provides:

- IP packet headers
- Virtual circuits
- **■** Example: Router
- PDU
 - Protocol data unit is the 'Packet'

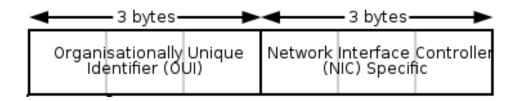
Layer 2 - The Data Link Layer

- 7 Application
- **6 Presentation**
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

■ Responsibilities:

- This layer provides reliable transit of data across a physical link.
- Makes decisions based on physical addresses (usually MAC addresses).

■ Provides:


- Physical Addressing
- Data link control
- **■** Example: Switch
- PDU
 - Protocol data unit is a 'Frame'

The Data Link Layer - The MAC sub-layer

- Provides addressing and channel control mechanisms that make it possible for network nodes to communicate over a shared medium
- Unique hardware Identifier MAC Address

00:90:E8

Layer 1 - The Physical Layer

- 7 Application
- 6 Presentation
- **5** Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

■ Responsibility:

- Transmission of raw bits over a communication channel.
- **■** Provides:
 - Mechanical and Electrical interfaces
 - Maintains link between systems
 - Timing
- **■** Examples: Cat-5, Fiber
- PDU 'Bits'

OSI Model vs TCP/IP Model

We Make Plant Information Flow

We Make Plant Information Flow

- 7 Application
- **6 Presentation**
- **5** Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

Application

Transport

Internet

Network Access

AutomaTech

Thank you! Please contact AutomaTech or visit www2.automatech.com/solution-briefs for additional information on future Solution Briefs and technology